Near weights on higher dimensional varieties

نویسندگان

  • Cícero Carvalho
  • Rafael Peixoto
  • Fernando Torres
چکیده

We generalize the concept of near weight stated in [2007, IEEE Trans. Inform. Theory 53(5), 1919–1924] in the sense that we consider maps to arbitrary wellordered semigroups instead of the nonnegative integers. This concept can be used as a tool to study AG codes based on more than one point via elementary methods only.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cohomology of Line Bundles on Schubert Varieties-i

The aim of this paper is to begin a study of the cohomology modules H(X(w),Lλ) for non-dominant weights λ on Schubert varieties X(w) in G/B. The aim is to set-up a combinatorial dictionary for describing the cohomology modules and give criteria for their vanishing. Here Lλ denotes the line bundle on X(w) corresponding to the 1-dimensional representation of B given by the character λ.

متن کامل

Codes on Varieties as Codes on Curves

The discovery of algebraic geometric codes constructed on curves led to generalising this construction on higher dimensional varieties. In this paper, we use a theorem of B. Poonen to show that the codes obtained from higher dimensional varieties can be realised as codes on curves. One of the important consequences of this result is that the search for good codes on varieties that beat the exis...

متن کامل

Algebraic geometry codes from higher dimensional varieties

This paper is a general survey of work on Goppa-type codes from higher dimensional algebraic varieties. The construction and several techniques for estimating the minimum distance are described first. Codes from various classes of varieties, including Hermitian hypersurfaces, Grassmannians, flag varieties, ruled surfaces over curves, and Deligne-Lusztig varieties are considered. Connections wit...

متن کامل

On the osculatory behaviour of higher dimensional projective varieties

Here we explore the geometry of the osculating spaces to projective varieties of arbitrary dimension. In particular, we classify varieties having very degenerate higher order osculating spaces and we determine mild conditions for the existence of inflectionary points. AMS Subject Classification: 14N05.

متن کامل

Closed Form Expressions for Hodge Numbers of Complete Intersection Calabi-Yau Threefolds in Toric Varieties

We use Batyrev-Borisov’s formula for the generating function of stringy Hodge numbers of Calabi-Yau varieties realized as complete intersections in toric varieties in order to get closed form expressions for Hodge numbers of Calabi-Yau threefolds in five-dimensional ambient spaces. These expressions involve counts of lattice points on faces of associated Cayley polytopes. Using the same techniq...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Des. Codes Cryptography

دوره 81  شماره 

صفحات  -

تاریخ انتشار 2016